
Automated Task-Based Synthesis and Optimization of Field Robots
Chris Leger

The Robotics Institute
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213
email: blah@cmu.edu
phone: (412) 268-8157

fax: (412) 268-5895

John Bares

National Robotics Engineering
Consortium

Carnegie Mellon University
#10 40th Street

Pittsburgh, PA 15201
email: bares@cs.cmu.edu

phone: (412) 268-7091
fax: (412) 681-6961
Abstract
We present Darwin2K, a widely-applicable, extensible

software tool for synthesizing and optimizing robot configu-
rations. The system uses an evolutionary optimization algo-
rithm that is independent of task, metrics, and type of robot,
enabling the system to address a wide range of synthesis
problems. A representation for robot configurations is de-
scribed which enables manipulators and mobile robots (in-
cluding free-flying robots, mobile manipulators, modular
robots, and multiple or bifurcated manipulators) to be syn-
thesized. Darwin2K includes a toolkit of simulation and
analysis algorithms which are useful for many synthesis
tasks; some of these components, such as dynamic simula-
tion, are novel in automated synthesis of robots. An exten-
sible system architecture enables new synthesis tasks to be
addressed while maximizing use of existing system capabil-
ities; this extensibility is a key contribution of the system.
We apply Darwin2K to a robot synthesis tasks that includes
synthesis and optimization of robot kinematics, dynamics,
structural geometry, and actuator selection.

Introduction: Why Automated Synthesis?

Robot configuration design is often performed in
an ad hoc manner. It can be difficult to translate the
requirements of a novel task into a robot configura-
tion, and in many robot design problems there are no
general design heuristics to provide guidance. Hu-
man designers rely on intuition and experience with
related design problems, and on engineering rules
based on the experience of other expert designers.
While these methods are suitable for human engineers
and can lead to designs that are well-understood and
can be predicted to meet the design objectives, one can
argue that human design approaches greatly restrict
the range of possible designs that are explored. When
addressing an entirely new problem, a designer may
not have much of a relevant experience base to draw
upon; in this case, an automated configuration synthe-
sis tool can generate well-optimized solutions without
requiring previous experience, and can explore much
more of the design space than a human designer.

Typically, the configuration process generates the
overall form of the robot, including kinematics and
other geometry at the bare minimum but often includ-
ing approximate descriptions of inertial properties,
actuator and material selection, and structural geome-
try. Frequently, a human investigates a small number
of concepts on paper and selects a few that look prom-
ising. More detailed studies may then be performed
on these, culminating in the simulation of one or more
designs. One of the candidates is selected for detailed
design, with tools such as finite element analysis used
to evaluate parts of the design. Once the robot is built,
changes may be required due to unforeseen problems
or factors that were not modeled in simulation. Signif-
icant design iterations are often not practical, since
much of a project’s schedule and resources may be de-
voted to creating a single robot; building a second or
third robot to remedy design flaws is out of the ques-
tion for many large robot design projects. Thus, it is
crucial to perform as much analysis and simulation be-
fore the robot is built, and it is highly desirable to “get
it right” the first time -- since the first time may be the
only time.

Because of these factors, automated synthesis tools
are especially attractive for robot design. Synthesis
tools can address novel design problems, explore a
large number of designs, quickly perform design iter-
ations in simulation, and produce a well-optimized so-
lution with high confidence of performance, all of
which contribute to the likelihood of success of the
first physical implementation.

Darwin2K is a software toolkit for automated syn-
thesis. It includes capabilities for quickly describing
and modifying robot configurations, simulating con-
figurations as they perform tasks, and automatically
synthesizing configurations to meet task-specific re-
quirements and to optimize performance. Darwin2K
is very useful in the early stages of the configuration
process, as it can automatically explore tens of thou-
sands of designs and can allow a human designer to
rapidly perform design iterations and evaluate poten-
tial robots in simulation.

Related Work

There has been much prior work in the area of ro-
bot design. However, research in automated design--
that is, the development of software systems which
perform a significant part of the synthesis of a robot--
has been limited to a handful of systems with widely

varying scope and goals.
Most configuration synthesis systems have em-

ployed evolutionary algorithms of some sort, due to the
robustness of such algorithms to local minimal and to
search spaces that are highly nonlinear and of varying
dimension. Previous approaches to robot configuration
synthesis can be divided into two categories: modular
design and non-modular design. The former group is
characterized by constructing robots from fixed mod-
ules, mirroring a set of reconfigurable hardware mod-
ules from which the actual robot is built. The latter
group has synthesized robots that are not built from
fixed modules, but which consist of purely kinematic
descriptions (i.e. Denavit-Hartenburg parameters or
equivalent).

Much of the previous work in synthesizing robot
configurations has been in the area of modular robots.
Most of these have been for modular manipulators
([Ambrose94], [Chen95], [Paredis96], [Chocron97],
[Han97]), while one ([Farritor96]) addressed mobile ro-
bots. Several of these approaches stand out for their
unique contributions: [Ambrose94], while limited to
planar manipulators, included modeling of actuators
and link deflection. [Paredis96] used higher-fidelity
simulation (including collision detection for non-trivial
geometry) and generated fault-tolerant manipulators
and motion plans. [Farritor96] generated modular field
robot configurations and motion plans, though a low-fi-
delity evaluation process was used in the interest of de-
creasing computation time.

Other work has addressed kinematic configuration
of monolithic (non-modular) manipulators. Kim and
Khosla [Kim93] use a genetic algorithm to determine
the location and Denavit-Hartenberg parameters for a
manipulator. Chedmail and Ramstein [Chedmail96]
use a genetic algorithm to determine the type (one of
several manipulators) and location of a robot to opti-
mize workspace reachability. McCrea [McCrea97] dis-
cusses the application of genetic algorithms to the
selection of several parameters for a manipulator used
in bridge restoration.

Several key limitations are apparent in previous ro-
bot synthesis systems. The only systems to consider
non-kinematic properties were those using fixed mod-
ules; the systems for monolithic manipulators are pure-
ly kinematic and have limited robot representations--
specifically, monolithic manipulators have been mod-
eled as joints connected by zero-thickness line seg-
ments. The strictly modular systems, while able to
represent non-kinematic properties, are not able to in-
dependently vary properties such as actuators or link
structure, thus leading to suboptimal solutions. Previ-
ous systems have not addressed analysis and simula-
tion needs such as dynamic simulation and estimation
of link deformation due to loads, thus inhibiting the
ability of these systems to meaningfully optimize actu-
ator selection or link structural geometry and inertial
properties.

System Description

An earlier version of Darwin2K is described in
[Leger98]. Here, we will briefly discuss Darwin 2K’s ar-
chitecture and describe recent additions, including an
improved method for optimizing multiple metrics, dy-
namic simulation, and optimization of non-kinematic
properites.

Darwin2K consists of two distinct parts: a configu-
ration synthesizer, and a simulation and analysis tool.
The synthesizer, called the Evolutionary Synthesis En-
gine (ESE), uses the simulation tool to evaluate the per-
formance of each new configuration it creates. The
ESE’s evoluationary algorithm synthesizes robot con-
figurations by applying genetic operators to one or
more existing parent configurations. The ESE selects
the parents from a population of configurations accord-
ing to their performance, so that each new configura-
tion is likely to perform well and will occasionally out-
perform its parent configuration(s). The performance
of each robot is measured in a task-specific manner: the
robot performs the task in simulation, and multiple
task-specific metrics (selected by the designer) record
various aspects for the robot’s performance.
Darwin2K’s 15 existing metrics include power con-
sumption, task completion time, robot mass, stability,
actuator saturation, and collision measurement.

Each configuration is assembled from one or more
parameterized modules, of which there are four basic
types: bases, links, joints, and tools. Each module rep-
resents a part of a robot, with an arbitrary number of
parameters that dictate specific properties. Modules
can have varying complexity, ranging from a simple
link with no moving parts, to a joint with one or degrees
of freedom, to an entire manipulator, to a mobile base.
Each module can have a number of connectors, which
indicate how the module can be attached to other mod-
ules. A module’s parameters may describe any proper-
ty of the module, such as a geometric dimension, a
discrete component selection (e.g. a motor, gearhead,
or material choice), or a controller gain. All modules
have the same generic interface to the ESE so that new
module types can be added to the system without re-
quiring changes to the ESE, thus enabling Darwin2K to
use task-specific modules when addressing novel de-
sign problems. Darwin2K currently contains approxi-
mately 30 general-purpose parameterized modules, as
well as 10 or so task-specific modules that were created
for specific synthesis problems (see Figure 1 for exam-
ples).

To represent a particular robot configuration, one
or more parameterized modules are assembled into a
graph, called the Parameterize Module Configuration
Graph (PMCG). Each node in the graph is a parameter-
ized module, and each edge is a connection between
modules. For serial-chain manipulators, this graph is
simply a connected series of modules, usually starting
with a base, followed by one or more links or joints, and
ending with a tool. Multiple and branching manipula-

tors can also be represented by having multiple
branches in the graph. One important aspect of the
PMCG is that each connection , and each module pa-
rameter, have a const-flag, which can be set to indicate
to the ESE that a particular feature should not change.
Thus, if the designer knows of any task-specific fea-
tures that would be beneficial, they can be directly en-
coded and preserved by the synthesizer..

The PMCG representation is easy for a human de-
signer to manually modify, thus allowing the designer
to quickly build configurations that can be simulated
using Darwin2K’s simulation tool. In addition to dis-
playing simulations of robots performing tasks, the
simulator also operates in a no-display mode, so that
the synthesizer can use it to measure the performance
of configurations. Many simulators can be distributed
over a network of computers, all providing fitness
measurements to the synthesizer. The simulator has a
wide range of capabilities including kinematic and dy-
namic simulation, collision detection (using the RAP-
ID library [Gottschalk96]), motion planning and
estimation of link deflections. Darwin2K’s simulation
toolkit includes several controllers, a motion planner
for planar mobile robots, and several trajectory repre-
sentations, and also allows the addition of new, task-
specific components such as controllers, performance
metrics, modules, and analysis algorithms. With these
existing components and the ability to add new capa-
bilities, a designer can quickly create a relevant simu-
lator for a new application and can begin manual or
automated synthesis of an appropriate robot.

Task Specification

Darwin2K performs task-specific synthesis: robots
are synthesized for a specific task, and are evaluated
with respect to the performance metrics and require-
ments of the task. There are two components to the
task specification: a set of performance requirements
or metrics, and a description of how the task is per-
formed. The vast majority of design problems involve
multiple, often-conflicting metrics such as cost versus
performance, speed versus power, or mass versus ca-
pability. Additionally, most tasks have hard limits
that must be met for one or more metrics: there can be
no collisions during operation, mass must be under a
certain limit, etc. These requirements and non-linear
dependencies (i.e. power consumption is irrelevant if
a robot can’t complete the task) cannot be effectively
encoded by simple scalarization, such as using a
weighted sum of metrics to create a single measure of
performance. To remedy this, Darwin2K’s task speci-
fication includes these constraints and priorities in a
natural manner, called Requirement Prioritization.
The designer selects a number of metrics (typically be-
tween 3 and 10), ranks them in order of importance,
and sets an acceptability threshold for some. For ex-
ample, a free-flying space robot tasked with servicing
a satellite might have the following metric specifica-
tion:

• 100 % task completion
• 0 collisions
• < 3mm cross-track error at the tool endpoint
• average actuator torque < 80% of rating for each

actuator
• link deflection < 1mm
• minimal mass, energy, and task completion time.

Task completion, collision, and accuracy are most im-
portant: any configuration that does not satisfy these is
inferior to any configuration that does. Thus, these are
given a priority of 0 (most important). To ensure that
actuators and links are appropriately sized, the actua-
tor torque and link deflections are added next, with a
priority of 1. Finally, we would like to minimize mass,
energy consumption, and completion time given that
the other requirements are satisfied, so these are given
a priority of 2. Darwin2K uses this specification to de-
termine how configurations are selected for reproduc-
tion: the highest-priority metrics (completion,
collision, and accuracy) are used until the population
contains a certain number of configurations that meet
the acceptability thresholds; then the next-highest
group is used until enough configurations meet that
group’s thresholds; and finally the last group of met-
rics (mass, energy and time) are used until the synthe-
sis process ends (since no acceptance criteria were set
for them). The synthesis process halts when either a
time limit is reached or when a fixed number of config-
urations have been generated (typically between
40,000 and 160,000). While optimizing within each
group of metrics, the metrics are randomly selected for

Figure 1: A selection of Darwin2K modules. Clock-
wise from upper left:
• a SCARA module with parameters for motors,
gearboxes, material, link lengths, link diameters,
wall thicknesses, and joint angle offsets
• a base module with bins for stacking payloads;
parameters for aspect ratio, number of bins, and
access location
• a mobile base for construction robots, with param-
eters for wheelbase, tread, and attachment location.
• a right-angle joint module with parameters for
motor, gearbox, material, link length, diameter, and
wall thickness

use based on how many configurations in the popula-
tion satisfy each metric. Thus, the metrics whose ac-
ceptability thresholds are satisfied by few or no
configurations will be used to select configurations
more frequently than the metrics which many configu-
rations satisfy. This automatically guides the synthesiz-
er to remedy the weaknesses of the population as a
whole. In practice, we have found this method to be
much more effective in optimizing multiple metrics
than scalarization approaches.

Specifying requirements and metrics is only one
part of the task specification; it is also necessary to de-
scribe the actions to be performed by the robot. For ro-
bots with manipulators, this typically involves
describing trajectories and any payloads or endpoint
forces for each manipulator. Parameters for each simu-
lation component are also set at this point.

Darwin2K contains a generic simulator for one or
more manipulators following a series of endpoint tra-
jectories using a Jacobian controller based on the Singu-
larity-Robust Inverse (SRI) [Nakamura86]. While this
simulator is suitable for a range of typical manipulation
tasks, each target application may have unique simula-
tion and evaluation requirements. For this reason, we
have structured Darwin2K’s software architecture so
that a new, task-specific simulator can be quickly con-
structed using Darwin2K’s existing simulation compo-
nents, which include collision detection, several
controllers, payload models, a motion planner for pla-
nar mobile robots, and several trajectory representa-
tions.

Task-specific simulators usually require little cod-
ing, normally just a main simulation loop: the evalua-
tion components handle the numerical details, while
the main simulator just controls which simulation capa-
bilities and controllers are used over the course of the
simulation. This allows the designer to rapidly con-
struct a simulator tailored to the application at hand,
ensuring that Darwin2K can accurately and relevantly
measure a robot’s performance. While Darwin 2K’s
simulation capabilities are useful by themselves to the
designer, once the simulation has been created
Darwin2K can perform synthesis and optimization of
all or part of a robot essentially for free--the designer
does not have to make any modifications to the synthe-
sis engine.

Dynamic Simulation

While a purely kinematic simulation may be ade-
quate for tasks that do not require large forces to be ap-
plied by or to the robot, there are some tasks for which
dynamic simulation must be used to accurately assess a
robot’s performance. Two broad classes of robots for
which dynamic simulation is crucial are free-flying ro-
bots (either in space or underwater), and large, high-
force robots such as those targeted at construction ap-
plications. Free-flying robots experience reaction forces
during manipulation that may move the entire robot,

while construction robots frequently require one or
more actuators to be operated at saturation (i.e. provid-
ing maximum force or torque output), in which case the
response of the robot will not be known without a dy-
namic model.

Darwin2K supports forward and inverse dynamic
modelling for fixed-base, mobile, and free-flying ma-
nipulators, including robots with branching or multiple
manipulators. The inverse dynamic problem (comput-
ing joint torques required to produce desired joint ac-
celerations) is relatively easy to solve using the well-
known iterative Newton-Euler dynamic formulation
[Craig89]. However, the forward dynamic problem--
computing the motion of a robot given the force applied
at each degree of freedom--is more difficult. The dy-
namic model of a robot can be expressed by the equa-
tion

Where T is a vector of joint torques, is the mass
matrix, is a vector of inertial and applied forces,
and is a vector of joint positions. Forward dynamic
simulation requires that M and V be constructed from
the current configuration of the robot, after which is
found by solving the set of equations. Computing M
and V is the crux of the problem: the Newton-Euler
equations (or equivalent) must be applied symbolicly to
yield equations for each element of T, and then these
equations must be factored to pull out the coefficients
for each entry of . Terms in the equations that do not
contain a joint acceleration get lumped into V. While
this can be easily done using Mathematica or a similar
package, or even by hand for a known robot, these ap-
proaches are not very useful for automated synthesis
where efficient dynamic simulation must be performed
for the tens to hundreds of thousands of unique robots
created by the synthesizer during a synthesis run.

Our approach to this problem is based on treating
each scalar in the dynamic equations as a linear combi-
nation of joint accelerations and a constant term; this is
possible because the dynamic equations do not contain
products of multiple s. To fill the ith row of M and
V, we symbolically compute the equation for the ith
joint torque, evalute the equation numerically, and
then extract the coefficient of each joint acceleration
and the constant coefficient. Performing this process
for each torque equation (i.e. for each row of M and V)
gives a system of equations that can be solved for
given the torque or force applied at each joint (T).

We have implemented a set of C++ arithmetic and
vector classes specialized for this approach. As de-
scribed above, each scalar value is considered to be a
linear combination of joint accelerations and a constant
term; we call these s-vals, for Separated Values (since
each joint acceleration coefficient is accumulated sepa-
rately). The Newton-Euler equations are symbolically
evaluated once using these classes to yield an equation
for each joint torque. At each simulation time step,
these equations are then numerically evaluated based

T M Θ()Θ̇̇ V Θ Θ̇,()+=

M Θ()
V Θ Θ̇,()

Θ

Θ̇̇

Θ̇̇

Θi
˙̇

Θ̇̇

on the current position and velocity of each joint. Each
computed joint torque (i.e. element of T) is an s-val; the
s-val’s elements are the elements of the corresponding
rows in M and V. After numerically evaluating the s-
val for each joint torque equation (i.e. for each row of
T, M, and V), we solve the system of equations for .
We then numerically integrate and using the
Runge-Kutta 4 algorithm [Press92] to compute the
next state of the robot. We use an adapative stepsizing
algorithm to maximize numeric stability and compu-
tational efficiency.

Design Examples

To verify Darwin2K’s ability to perform configu-
ration synthesis for challenging applications, we used
Darwin2K to configure a free-flying space robot with
two manipulators for a satellite servicing task. The
task is loosely based on the requirements of the Ranger
Telerobotic Flight Experiment and Telerobotic Shuttle
Experiment ([SSL99]), and consists of both kinematic
and dynamic simulations. The kinematic simulation is
designed to ensure that the robot’s manipulators have
adequate workspaces, and consists of having the ma-
nipulators follow trajectories that cover a reasonable
workspace. The SRI controller is used to control the
manipulators, and collision detection is performed to
ensure that there is no interference between the robot’s
manipulators.

The dynamic simulation is more involved and is
designed to be representative of the operations re-
quired of the robot. The robot starts at a position near
a 9100kg satellite, uses one arm to grapple the satellite
and then move the base to a known location relative
to the satellite. The robot’s other manipulator (the
work manipulator) then removes an Orbit Replacable
Unit from the satellite, and the grapple manipulator
moves the base relative to the satellite again. Finally,
the work manipulator re-inserts the ORU into the sat-
ellite at another location. Darwin2K’s free-flyer con-

troller (an SRI controller augmented with the robot’s
dynamic model) was used to control the robot during
the dynamic simulation. The ORU has a mass of 5kg
and requires a torque of 14 Nm (10 ft-lbs) to engage or
disenage from the satellite, and 45N (10lbs) of force to
insert or remove. The metrics used were those speci-
fied earlier in the “Task Specification” section. During
optimization of the first requirement group (task com-
pletion, collision detection, and accuracy), kinematic
simulation was used for the entire simulation; dynam-
ic simulation was used as specified above for the re-
maining two requirement groups.

Five module types were used in the synthesis pro-
cess: a free-flying base module massing 267kg; a tool
module representing Ranger’s Microconical End Ef-
fector (MEE); and three joint modules (each with six
parameters for various dimensions and for motor,
gearbox, and material selections). The robot was con-
strained to have symmetric arms with 7 or 8 degrees of
freedom each, and in addition to the parameters of
each module, there were six task parameters: two
specified the base’s initial pose relative to the satellite,
and the remaining four specified the velocity and ac-
celeration of the base during each of the two relative
base motions. The design space contained 5.14x1058

configurations. For this problem, we ran Darwin2K
using idle CPU time from approximately 30 comput-
ers over 8 hours. After evaluating 5,000 configura-
tions, 100 out of 200 configurations in the population
satisfied the first requirement group. After 11,000
evaluations, a configuration satisfying the second re-
quirement group had been created, and Darwin2K
moved to the final requirement group at 20,000 config-
urations. At this point, 16 of the 200 configurations in
the population satisfied the task requirements; the re-
mainder of the run was spent minimizing mass, ener-
gy, and task completion time. Figure 2 shows the best
mass, energy, and time of the feasible configurations
as the final requirement group was optimized. During
the last requirement group, the mass of the lightest
configuration in the population decreased from 541kg
to 418kg; the lowest energy consumption decreased

Θ̇̇
Θ̇ Θ̇̇

Figure 2: (top to bottom) Best mass, energy, and
time of feasbile configurations during optimization

se
cs

 k
g

w
at

ts

Figure 3: Screenshot from Darwin2K’s simulator
showing the feasible configuration with lowest ener-
gy consumption as it begins to insert the ORU into the
satellite.

c-

a-

al

of

.
e
f
el

.
g

le
e-

nd

c-

in

a-

s
l.
ol

-

i-

nd

’s
p-
from 2.1kJ to 0.6kJ, and task completion time decreased
from 41s to 37s. Figure 3 shows the feasible configura-
tion with lowest energy consumption. After 8 hours,
43,000 configurations had been evaluated; on average,
each evaluation took 20 seconds of realtime for roughly
40 seconds of simulated time.

We have also applied Darwin2K to other synthesis
tasks where dynamic simulation is not required. In
these cases, actuator selection and link structural sizing
can still be performed since the inverse dynamic equa-
tions can be applied at each time step to estimate the
torque required at each actuator. These torques can be
compared to the torque capability of each actuator, and
can be used to estimate link deflection to ensure that
links are sufficiently stiff. Figure 4 shows results from
two of these other synthesis tasks: a robot for storing
and retrieving containers of wafers in semiconductor
fabrication plant and a manipulator for waterproofing
Space Shuttle tiles (based on the task described in
[Kim93]. While the details of these synthesis tasks are
beyond the scope of this paper, they are mentioned here
to give the reader an idea of the breadth of application
of Darwin2K.

Conclusion

Darwin2K is a practical, widely-applicable task-
based automated synthesis system, and is significantly
more capable than previous approaches to automated
synthesis. The system’s extensible, modular software
architecture allows task-specific simulations to be easi-
ly constructed so that new tasks may be addressed in a
relevant manner. The Parameterized Module Configu-
ration Graph can represent a wide range of robot con-
figurations and allows the designer to quickly generate
prototypes and evaluate them in simulation.

Darwin2K’s synthesis engine can optimize partially-
specified configurations and synthesize entirely novel
robots, allowing well-optimized designs to be generat-
ed for novel, complex, and poorly-understood applica-
tions.

References

[Ambrose94] R. Ambrose and D. Tesar. The Optimal Sele
tion of Robot Modules for Space Manipulators. InPro-
ceedings of the ASCE Space 94 Conference.

[Chedmail96] P. Chedmail and E. Ramstein. Robot mech
nism synthesis and genetic algorithms.In Proceedings of
ICRA 1996, pages 3466–3471.

[Chen95] I. Chen and J. Burdick. Determining task optim
modular robot assembly configurations.In Proceedings of
ICRA 1995, pages 132–137, 1995.

[Chocron98] O. Chocron and P. Bidaud. Genetic Design
3D Modular Manipulators. InProceedings of ICRA 1997,
pp. 223-228.

[Craig89] J. Craig.Introduction to Robotics: Mechanics and
Control. Addison-Wesley, 2nd edition, 1989.

[Gottschalk96] S. Gottschalk, M. C. Lin and D. Manoch
OBB-Tree: A hierarchical Structure for Rapid Interferenc
Detection. Technical Report TR96-013, Department o
Computer Science, University of North Carolina, Chap
Hill, 1996.

[Han98] J. Han, W. K. Chung, Y. Youm, and S. H. Kim
Task Based Design of Modular Robot Manipulator usin
Efficient Genetic Algorithm. In Proceedings of ICRA
1997, pp. 507-512.

[Kim93] J.-O. Kim and P. Khosla. Design of space shuttle ti
servicing robot: An application of task-based kinematic d
sign. InProceedings of ICRA 1993, pp 867–874.

[Leger98] C. Leger and J. Bares. Automated Synthesis a
Optimization of Robot Configurations. InProceedings of
the 1998 ASME Design Engineering Technical Conferen
es.

[McCrea97] A. McCrea. Genetic algorithm performance
parametric selection of bridge restoration robot. InPro-
ceedings of the 14th International Symposium on Autom
tion and Robotics in Construction, pages 437–441, 1997.

[Nakamura86] Y. Nakamura. Inverse kinematic solution
with singularity robustness for robot manipulator contro
Journal of Dynamic Systems, Measurement, and Contr,
108:163–171 September 1986.

[Paredis96] C. Paredis.An Agent-Based Approach to the De
sign of Rapidly Deployable Fault Tolerant Manipulators.
PhD thesis, The Robotics Institute, Carnegie Mellon Un
versity, 1996.

[Press92] W. Press and S. Teukolsky and W. Vetterling a
B. Flannery,Numerical Recipes In C. Cambridge Universi-
ty Press, 2nd edition, 1992.

[SSL99] University of Maryland Space Science Laboratory
Ranger project homepage: http://www.ssl.umd.edu/home
age/Projects/ranger.html (as of July 1999).

Figure 4: A gantry-mounted SCARA manipulator syn-
thesized for a storage and retrieval task (upper left),
and a 5-DOF arm with prismatic joint synthesized for
waterproofing tiles on the Space Shuttle (lower right).

	Automated Task-Based Synthesis and Optimization of Field Robots
	Abstract
	Introduction: Why Automated Synthesis?
	Related Work
	System Description
	Figure 1: A selection of Darwin2K modules. Clockwise from upper left:

	Task Specification
	Dynamic Simulation
	Design Examples
	Figure 2: (top to bottom) Best mass, energy, and time of feasbile configurations during optimizat...
	Figure 3: Screenshot from Darwin2K’s simulator showing the feasible configuration with lowest ene...
	Figure 4: A gantry-mounted SCARA manipulator synthesized for a storage and retrieval task (upper ...

	Conclusion
	References

